
TMO Progress Report 42-144 February 15, 2001

Beacon-Based Exception Analysis for
Multimissions: Technology for

Autonomous Self-Analysis
R. Mackey,1 M. James,1 H. Park,1 and M. Zak1

Beacon-Based Exception Analysis for Multimissions (BEAM) is an end-to-end
method of data analysis intended for real-time fault detection and characterization.
It provides a generic system analysis capability for potential application to deep-
space probes and other highly automated systems. This article describes in brief
the architecture, application, and operating theory of BEAM. BEAM provides a
generalized formalism for diagnostics and prognostics in virtually any instrumented
system. Consideration is given to all standard forms of data: time-varying (sensor
or extracted feature) quantities and discrete measurements, embedded physical and
symbolic models, and communication with other autonomy-enabling components
such as planners and schedulers. This approach can be adapted to on-board or off-
board implementations with no change to the basic operating theory. The approach
is illustrated with an overview of application types, past validations, and ongoing
efforts.

I. Introduction

BEAM stands for Beacon-Based Exception Analysis for Multimissions, which is a complete method
of data analysis for real-time fault detection and characterization. The original intended application of
this project was to provide a generic system analysis capability for deep-space probes and other highly
automated systems. Such systems are typified by complex and unique architectures, high volumes of data
collection, limited bandwidth, and a critical need for flexible and timely decision abilities.

Beacon monitoring was the original impetus for this design. Beacon monitoring is a telemetry method
wherein a subset of available engineering data is broadcast by the monitored system as follows: Rather
than downlink the entire engineering data set at all times, the approximate condition of the spacecraft
or remote system is categorized into one of several beacon tones. These tones correspond to (1) nominal
system operation, (2) anomalous or interesting operation, (3) degradation or significant faults, or (4) total
failure. The beacon tone is sent at all times using a much simpler telemetry system. Additional data are
sent if and only if specific attention is requested or required of system operators. In other words, beacon
monitoring represents a step toward machine self-reliance.

1 Exploration Systems Autonomy Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

1

This method is only practicable if a number of hurdles can be overcome. Central to the method is the
ability of a spacecraft to perform an accurate, timely, and verifiable self-diagnosis. Such a self-diagnosis
must not only provide a safe operating envelope but must perform, at worst, comparably to spacecraft
experts in a control room. A system that is insensitive, generates false alarms, or requires oversight will
not be effective, because such inefficiencies will be amplified in a streamlined process.

The basic premise of BEAM is the following: Construct a strategy to characterize a system from all
available observations, and then train this characterization with respect to normal phases of operation. In
this regard, the BEAM engine functions much as a human operator does—through experience and other
available resources (known architecture, models, simulation, etc.), an allowed set of behavior is learned
and deviations from this are noted and examined. Such an approach should be applied as a complement
to simplistic but reliable monitors and alarms found in nearly all instrumented systems. The approach
should also be constructed such that information products can be used to drive autonomic decisions or
to support the decisions of human operators. In other words, the system must allow for intervention
and aid it wherever possible. If this is not done, it is difficult for spacecraft experts to gain trust in
the system, and the benefits of beacon operation (or any similar cost-saving approach) will be doomed
from the outset. In this manner, BEAM is not solely suited to beacon monitoring but is more broadly
applicable to monitored or wholly autonomous systems.

Two important features make BEAM a standout among the various fault-protection technologies that
have been advanced. The first is its broad range of applicability. This approach has been used with sensor
and computed data of radically different types, on numerous systems, without detailed system knowledge
or a priori training. Separate components are included to treat time-varying signals and discrete data
and to interpret the combination of results.

The second is its ability to detect and, with few exceptions, correctly resolve faults for which the
detector has not been trained. This flexibility is of prime importance in systems with low temporal
margins and those with complex environmental interaction. This ability also comes with few requirements
in terms of detector training.

Since its original inception, BEAM has been matured and proven on many separate applications, both
on-board and off-board. We will consider the architecture and theory behind this approach and briefly
illustrate the implications of such a strategy from these applications.

II. Basic Architecture

At the simplest level of abstraction, BEAM is software that takes data as input and reports fault status
as output. Implementation of this software is dependent on the application, but a typical application
would have a system with a number of individual components, each of which reports health or performance
data to a local computer. At this juncture, a local BEAM manager draws a conclusion based on that data
during run time and forwards the results to a decision maker. We must consider the physical makeup
of the device in question when deciding how to compartmentalize the diagnosis. Consideration must
be made for computing power, communication and data buses, and the natural divisions present in the
system. To accommodate such a wide range of possibilities, the computational engine of BEAM itself is
highly adaptable with respect to subsystem size and complexity.

For each single compartment or subsystem, we can expect to receive four types of data, as follows:

2

(1) Discrete status variables changing in time—modes, switch positions, health bits, etc.

(2) Real-valued sensor data varying at fixed rates—performance sensors or dedicated diag-
nostic sensors

(3) Command information—typically discrete as in item (1)

(4) Fixed parameters—varying only when commanded to change but containing important
state information

These types of data are all of value but are useful in different ways. Status variables and commands
are useful to a symbolic model. Commands and fixed parameters are useful to a physical system model.
Time-varying sensor data are useful for signal-processing approaches. An optimal strategy must take
each of these into account and produce a single, unified decision. In order to study each and combine
results, we propose the following BEAM architecture, as presented in Fig. 1.

SENSOR
DATA

DISCRETE
DATA

GROUPED
SIGNALS

MODEL
FILTER

INDIVIDUAL
SIGNALS

SYMBOLIC
DATA

MODEL

COHERENCE
FAULT

DETECTOR

FEATURE-
BASED
FAULT

DETECTOR

PREDICTED
STATE

SYSTEM
INVARIANTS

IMPLICATED
SIGNALS

PREDICTIVE
COMPARATOR

IMG

PROGNOSTIC
ASSESSMENT

MODE
PROJECTION

CAUSAL
SYSTEM
MODEL SOURCE

HYPOTHESIS

INTERPRETATION
LAYER

FEATURE
PARAMETERS

Fig. 1. Top-level BEAM architecture.

A few notes about the architecture are in order before we consider the individual descriptions of its
components. Specifically, we should consider the data flow, which is somewhat complicated:

(1) Fixed parameters and command information are input to the specific system models (if
any). These are contained in the symbolic model and the physical model components.
These data will not be propagated further and influence other components only through
the model outputs.

(2) Discrete variables will be propagated only through the symbolic components. The sym-
bolic components support the signal-processing components by providing a mode deter-
mination from the discrete data.

(3) Time-varying quantities are separated into two groups as part of the training process.
Specifically, signals with high degrees of correlation to others, or those not expected to
uniquely indicate a severe fault, are passed only to the coherence analysis components.
Signals that may uniquely indicate a fault, along with those already flagged as faulty
by the coherence analysis, require additional processing and are also passed through the
feature extraction components.

3

(4) The split between time-varying signals described in item (3) is a computational efficiency
consideration and reflects general philosophy of operation but is not essential. Given
adequate resources, there is nothing preventing all time-varying signals from being sent
to both types of signal analysis at all times.

Descriptions of the individual components and their internal structures are presented in the following
section.

III. Component-Level Descriptions

The components of the BEAM architecture are designed to take advantage of different sources of in-
formation and to produce unique conclusions about the health of the system. We must account for all
types of data and models, and we wish to perform not only fault detection and isolation, but also nov-
elty detection, prognostic assessment, impact assessment, and diagnostics (implication of malfunctioning
components) wherever possible. Each of the various components listed below performs a particular duty.

A. Model Filter

The model filter, also referred to as the gray box, combines sensor data with physical model predictions
(run in real time). We are interested in augmenting sensor data with intuition about the operation of
the system. The inclusion of physical models where available is the most efficient means of incorporating
domain knowledge into a signal-based processing approach.

The usual methods of signal processing, including the dynamical invariant anomaly detector com-
ponent of BEAM, represent “black box” strategies; i.e., nothing is known about the internal governing
equations of a system. Such linear approaches are effective in general, but there are profound benefits
to simultaneous consideration of sensor and physical information. The opposite perspective would be a
“white box” strategy, wherein a complete and accurate physical simulation was available for comparison
with captured data. This case is desirable but rarely practical. In nearly all cases, we must make do
with a degraded or simplified model, either because of system complexity or computational limits. The
“gray box” method serves to make use of whatever models are available, as we will briefly explore in this
section. For a thorough treatment, please see [1].

Any theoretical dynamical model includes two types of components: those directly describing the
phenomena associated with the primary function of the system (such as the effect of torque exerted on
the turbine shaft on rotor speed) and those representing secondary effects (such as frictional losses, heat
losses, etc.). The first type usually is well understood and possesses a deterministic analytical structure,
and, therefore, its behavior is fully predictable. On the other hand, the second type may be understood
only at a much more complex level of description (i.e., at the molecular level) and cannot be simply
incorporated into a theoretical model. In fact, some components may be poorly understood and lack
any analytical description, such as viscosity of water in microgravity. The main idea of this approach
is to filter out contributions that are theoretically predictable from the sensor data and focus on the
components whose theoretical prediction is lacking. The filtering is performed by the theoretical model
itself.

If we assume that the theoretical model is represented by a system of differential equations, known
physical processes will be described with state variables and theoretical functions. But we will also have
additional terms that describe phenomena for which a full mathematical description is unavailable or too
complex. Examples of this include friction in bearings, material viscosity, and secondary effects such as
oscillations or flutter in mechanical systems. These leftover terms represent the unknown space of our
partial model.

4

If we substitute sensor data into the theoretical model, so long as the actual system performs as
expected, there will be no departure from the model. However, an abnormality in performance will alter
the behavior of the “leftover” terms.

In general, we can treat the abnormality as the result of a stochastic process. If the abnormality is
small compared with the modeled components of the system, it will suffice to assign some confidence
interval for fault detection. However, if the accuracy of the model is poor, we must treat the leftover
terms using stochastic or parameter estimation models, as described in the following components.

Compared with a straightforward signal analysis method, wherein highly stable dynamical models are
available, the black box approach is not only more laborious but is also less effective since the stochastic
forces become deeply hidden in the sensor data. The practical upshot of the gray box approach is to use
the theoretical model as a filter, which damps the deterministic components and amplifies the stochastic
components, simplifying the task of fault detection for the other components.

Because this approach can operate upon high- and low-fidelity models, it is highly effective as a means
of preprocessing sensor data. Such models are available for the majority of autonomous systems, leftover
from the design and analysis efforts to build such systems.

B. Symbolic Data Model

In the overall BEAM strategy, real-time measurements are combined with predicted and expected
behavior along with predicted performance to quickly isolate candidate faults. The symbolic data model
(SDM) is the first line of defense in determining the overall health of the system, and it is the primary
component that determines the system’s active and predicted states. The SDM operates by examining
the values from status variables and commands to provide an accurate, evolving picture of system mode
and requested actions. The overall approach afforded by BEAM extends considerably beyond more
conventional symbolic reasoning. Since most rule-based diagnostic systems (expert systems) provide only
this module and nothing else, they are limited in that they can only identify and diagnose anticipated
problems.

Knowledge in the SDM is represented as rules, which are themselves composed of patterns. The rule
is the first Aristotelian syllogism in the form: If . . . Then The variables of the syllogism are joined
by the And/Or logical connections. The selector Else points to other cases. This formula is a rule; the
rules are sequenced in the succession of logical thinking or pointed at a jump in the sequence (Else ->>>
Go To).

Patterns are relations that may or may not have temporal constraints, i.e., may hold true only at
certain times or persist for the entire duration of the analysis. Patterns define the constraints that must
hold true in order for the antecedent to succeed.

Conceptual representation is the main way to formulate the patterns of the system as part of a computer
program. The essential tool the SDM uses is a rule; that is the reason why expert systems can also be
called rule-based systems.

The SDM operates by using many small slivers of knowledge organized into conditional if–then rules.
These rules are then operated on in a variety of ways to perform different reasoning functions.

Unlike the numeric models, the SDM requires a knowledge base in order to perform its analysis
functions. From several points of view, representation of knowledge is the key problem of expert systems
and of artificial intelligence in general. It is not by chance that the term “knowledge-based systems” has
been applied to these products.

The generic features of knowledge are embodied in this representation. The domain expert stores
the objects, actions, concepts, situations, and their relations using the Spacecraft High-Speed Inference

5

Engine (SHINE) [3] representation language, and this is stored in the SDM knowledge base. The collection
of this knowledge represents the sum total of what the SDM will be able to understand. The SDM can
only be as good as the domain expert that taught it.

The SDM generates two primary kinds of results: derived states and anomalies. To provide a uniform
representation, we use the identical approach in performing each of these functions, and they differ only
in the knowledge bases that they use. Derived states are sent on to signal-processing components as well
as other discrete components. Anomalies, as the name implies, are concrete indications of faults.

C. Coherence-Based Fault Detector

The coherence-based fault detector is a general method of anomaly detection from time-correlated
multi-signal sensor data. This is described mathematically in [2] along with an illustrative application.
The method is applicable to a broad class of problems and is designed to respond to any departure from
normal operation, including faults or events that lie outside the training envelope.

Also referred to as the system invariance estimator (SIE), it receives multiple time-correlated signals
as input, as well as a fixed invariant library constructed during the training process (which is itself
data-driven using the same time-correlated signals). It returns the following quantities:

(1) Mode-specific coherence matrix

(2) Event detection

(3) Comparative anomaly detection

(4) Anomaly isolation to specific signals

(5) Distance measure of off-nominal behavior

As a first step of analysis, this computation makes a decision as to whether or not a fault is present and
reduces the search space of data to one or a few signals. Time markers are included to indicate the onset
of faulted data. These conclusions, which can be drawn for nearly any system, are then passed to other
analysis components for further feature extraction, correlation to discrete data events, and interpretation.

To motivate a cross-signal approach, consider that any continuously valued signal, provided it is
deterministic, can be expressed as a time-varying function of itself, other signals, the environment, and
noise. The process of identifying faults in a particular signal is identical to that of analyzing this function.
Where the relationship is constant, i.e., follows previous assumptions, we can conclude that no physical
change has taken place and the signal is nominal. However, the function is likely to be extremely complex
and nonlinear. Environmental variables may be unmeasurable or unidentified. Lastly, the interaction
between signals may be largely unknown. For this reason, it is more efficient to study invariant features
of the signals rather than the entire problem.

Because we do have the different signal measurements available, we can consider relationships be-
tween signals separately and effectively decouple the problem. A good candidate feature is signal cross-
correlation. By studying this or a similar feature rather than the raw signals, we have reduced our
dependence on external factors and have simplified the scope of the problem.

In the case of the SIE, we will use a slightly different feature across pairs of signals, which we refer
to as the coherence coefficient. It is chosen instead of the ordinary coefficient of linear correlation in
order to take advantage of certain “nice” mathematical properties. This coefficient, when calculated for
all possible pairs of N signals, describes an N × N matrix of values. The matrix is referred to as the
coherence matrix of the system. The coherence matrix, when computed from live streaming data, is an
evolving object in time with repeatable convergence rates. Study of these rates allows us to segment the
incoming data according to mode switches and to match the matrix against precomputed nominal data.

6

For the purpose of this discussion, a “mode” refers to a specific use or operation of the system in
which the coherence coefficients are steady. In other words, the underlying physical relationships between
parameters may change but should remain constant within a single mode. These modes are determined
from training data for the purpose of detector optimization. Ordinarily they do correspond to the more
familiar modes, which represent specific commands to or configurations of the system, but they need not
be identical. Frequently such commands will not appreciably alter the physics of the system, and no
special accounting is needed.

Comparison of the run-time coherence matrix to a precomputed, static library of coherence plots,
taking into account the convergence behavior of the computation, is an effective means of anomaly
detection and isolation to one or more signals. Unfortunately, this comparison is only meaningful if we
can guarantee our present coherence values do not reflect mixed-mode data, and so some method of
segmentation must be found. For purposes of anomaly detection, mode boundaries can be detected by
monitoring the self-consistency of the coherence coefficients. As each new sample of data is included
into the computation, a matrix average for the resulting change is extracted and compared against the
expected convergence rate. A change in the convergence rate implies a new mode has been entered and
the computation must be restarted.

Between detected mode transitions, the difference between the computed and expected coherence
allows us to optimally distinguish between nominal and anomalous conditions. Violation of this conver-
gence relationship indicates a shift in the underlying properties of the data, which signifies the presence
of an anomaly in the general sense. The convergence rate of this relationship, used for fault detection, is
considerably slower than that for data segmentation, though still fast enough to be practical.

Once a fault has been indicated, the next step is to isolate the signals contributing to that fault. This
is done using the difference matrix, which is formed from the residuals following coherence comparison
against the library.

Because nearly every autonomous system relies upon performance data for operation as well as fault
protection, this method is applicable to a wide variety of situations. The detector increases in accuracy
as the number of sensors increases; however, computational cost and mode complexity eventually place
a practical limit on the size of the system to be treated. This method has been successfully applied to
systems as small as four sensors and as complex as 1,600 of radically varying type.

Another key virtue of this approach is its resilience in the face of novelty. The coherence between
signals is a very repeatable property in general, especially as compared with environmental variable or
nonlinear terms in the signals themselves. This repeatability allows us to quickly determine whether or
not the coherence is consistent with any of the training data and, therefore, can be used as an efficient
novelty detector, regardless of its cause.

D. Dynamical Invariant Anomaly Detector

The dynamical invariant anomaly detector is designed to identify and isolate anomalies in the behavior
of individual sensor data. Traditional methods detect abnormal behavior by analyzing the difference
between the sensor data and the predicted value. If the values of the sensor data are deemed either too
high or low, the behavior is abnormal. In our proposed method, we introduce the concept of dynamical
invariants for detecting structural abnormalities.

Dynamical invariants are governing parameters of the dynamics of the system, such as the coefficients
of the differential (or time-delay) equation in the case of time-series data. Instead of detecting deviations
in the sensor data values, which can change simply due to different initial conditions or external forces (i.e.,
operational anomalies), we attempt to identify structural changes or behavioral changes in the system
dynamics. While an operational abnormality will not lead to a change in the dynamical invariants, a true

7

structural abnormality will lead to a change in the dynamical invariants. In other words, the detector
will be sensitive to problems internal to the system, but not to external disturbances.

We start with a description of a traditional treatment of sensor data given in the form of a time series
describing the evolution of an underlying dynamical system. It will be assumed that this time series
cannot be approximated by a simple analytical expression and does not possess any periodicity. In simple
words, for an observer, the future values of the time series are not fully correlated with the past ones,
and, therefore, they are apprehended as random. Such time series can be considered as a realization
of an underlying stochastic process, which can be described only in terms of probability distributions.
However, any information about this distribution cannot be obtained from a simple realization of a
stochastic process unless this process is stationary—in this case, the ensemble average can be replaced
by the time average. An assumption about the stationariness of the underlying stochastic process would
exclude from consideration such important components of the dynamical process as linear and polynomial
trends, or harmonic oscillations. Thus, we develop methods to deal with nonstationary processes.

Our approach to building a dynamical model is based upon progress in three independent fields:
nonlinear dynamics, theory of stochastic processes, and artificial neural networks.

After the sensor data are “stationarized,” they are fed into a memory buffer, which keeps a time history
of the sensor data for analysis. We will study critical signals, as determined by the symbolic components
of BEAM, the operating mode, and the cross-signal methods outlined above. The relevant sensor data
are passed to a Yule–Walker parameter estimator. There, the dynamical invariants and the coefficients
of the time-delay equation are computed using the Yule–Walker method.

Once the coefficients are computed, they are compared with the ones stored in a model parameter
database. This contains a set of nominal time-delay equation coefficients appropriate for a particular
operating mode. A statistical comparison will be made between the stored and just-computed coefficients
using a bootstrapping method, and, if a discrepancy is detected, the identity of the offending sensor will
be sent on.

Further analysis is carried out on the residual or the difference between the sensor data values and the
model predicted values, i.e., the uncorrelated noise, using a nonlinear neural classifier and noise analysis
techniques. The nonlinear neural classifier is designed to extract the nonlinear components, which may
be missed by the linear Yule–Walker parameter estimator. The weights of the artificial neural network,
another set of dynamical invariants, will be computed and compared with nominal weights stored in
the model parameter database. Similarly, the noise characteristics, such as the moments of probability
distribution, are dynamic invariants for stationarized sensor data and will be compared with those stored
in the model parameter database. If any anomalies are detected in either the nonlinear components or
the noise, the identity of the sensor will be sent to the channel anomaly detector.

Finally, the channel anomaly detector aggregates information from the Yule–Walker parameter esti-
mator, nonlinear neural classifier, and noise analysis modules, and classifies the anomaly before sending
the fault information to the predictive comparison module, which is discussed below.

E. Informed Maintenance Grid

The purpose of the informed maintenance grid (IMG) is to study evolution of cross-channel behavior
over the medium- and long-term operation of the system. Tracking of consistent deviations exposes
degradations and lack of performance.

The IMG itself is a three-dimensional object in information space, intended to represent the evolution
of the system through repeated use. The IMG is constructed from results from the SIE described above,
specifically the deviations in cross-signal moments from expected values, weighted according to use and

8

averaged over long periods of operation. The cross-signal moments are persistent quantities, which amplify
their values in long-term degradation estimation.

There are two convincing reasons to consider cross-signal residuals in this fashion. First is the specific
question of degradation and fault detection. Degradation typically manifests as a subtle change in oper-
ating behavior, in itself not dramatic enough to be ruled as a fault. This emergent behavior frequently
appears as subthreshold residuals in extracted signal features. As described above, statistical detection
methods are limited in sensitivity by the amount of data (both incident and training data) that can be
continuously processed. However, tracking of consistent residuals over several such experiments can lead
to a strong implication of degraded performance.

The second reason addresses the functional health of the system. In addition to tracking the magnitude
and consistency of residuals arising from degradation, we can also observe their spread to other signals
within the system and track their behavior relative to different modes of usage.

The IMG produces a long-term warning regarding system-wide degradations. This differs slightly
from the companion prognostic assessment module, which concerns itself with individual signals and pre-
established operating limits. However, the IMG is also useful with regard to novel degradations. Such
are the norm with new advanced systems, as predicting degradation behavior is very difficult and much
prognostic training must be done “on the job.”

Visually, the three-dimensional object produced by the IMG is an easily accessible means of summa-
rizing total system behavior over long periods of use. This visual means of verifying IMG predictions
makes BEAM easily adapted for applications with human operators present.

F. Prognostic Assessment

The prognostic assessment component provides a forward projection of individual signals based on
their model parameters. Based on this, it establishes a useful short-term assessment of impending faults.

The channel level prognostics algorithm is intended to identify trends in sensor data that may exceed
limit values, such as redlines. This by itself is a common approach. However, given the richness of feature
classification available from other BEAM components, it is highly effective to update this procedure. A
stochastic model similar in principle to the auto-regressive model is used to predict values based upon
previous values, viz., forecasting. The aim is to predict, with some nominal confidence, if and when the
sensor values will exceed their critical limit values. This permits warning of an impending problem prior
to failure.

In general, time-series forecasting is not a deterministic procedure. It would be deterministic only if a
given time series were described by an analytical function, in which case the infinite lead-time prediction
would be deterministic and unique based upon values of the function and all its time derivatives at t = 0.
In most sensor data, this situation is unrealistic due to incomplete model description, sensor noise, etc.
In fact, present values of a time series may be uncorrelated with previous values, and an element of
randomness is introduced into the forecast.

Such randomness is incorporated into the underlying dynamical model by considering the time series
for t ≤ 0 as a realization of some (unknown) stochastic process. The future values for t > 0 can then
be presented as an ensemble of possible time series, each with a certain probability. After averaging the
time series over the ensemble, one can represent the forecast as the mean value of the predicted data and
the probability density distributions.

The methodology of time-series forecasting is closely related to model fitting and identification.
In general, the nonstationary nature of many sensor data may lead to misleading results for future
data prediction if a simple least-squares approach to polynomial trend and dominating harmonics is

9

adopted [4]. The correct approach is to apply inverse operators (specifically difference and seasonal dif-
ference operators) to the stationary component of the time series and forecast using past values of the
time series.

To implement this module, we begin by feeding a predictor stationary data, the auto-regressive model
coefficients, past raw data values, and limit values, i.e., everything required to evaluate the prediction plus
a redline value at which to stop the computation. The predictor will generate many predictions of time
to redline and pass them on to the redline confidence estimator. The redline confidence estimator will
then construct a probability distribution of the time when the channel value will exceed the redline limit.
Finally, the failure likelihood estimator takes the probability distribution and computes the likelihood
(probability) that the channel value may exceed the redline value within some critical time. If the
probability exceeds a certain preset threshold as determined by the application, e.g., 99 percent confidence,
then the critical time and its probability will be sent to the symbolic components.

G. Predictive Comparator

The predictive comparison (PC) component compares the requested and commanded operation of the
system with the sensed operation as interpreted from the time-varying quantities. Its goal is to detect
misalignment between system software execution and system hardware operation. This is a principal
concern, as we are dealing with systems that rely on a large degree of software control, if not complete
autonomy.

The PC combines the results from the numeric and symbolic engines and looks for confirmation and
differences between them. It is the primary interface that merges the symbolic results for the system-
predicted state and explicit failures with suspected faulty channel implications and event detections
from the signal-based components. Its result is a sequence of confirmed predicted failures and detected
unmodeled events.

A failure is considered confirmed when both the numeric and symbolic engines predict the same failure
or system state change. Unmodeled events are cases in which the numeric and symbolic engines differ
in their conclusions or in which no conclusion can be reached based on the training information. The
capability to compare parallel analysis engines, each approaching the problem from an entirely different
theoretical foundation, is a particular asset of BEAM.

This module uses generic symbolic processing algorithms and does not require a knowledge base in
order to perform its function. The following kinds of comparisons are made:

(1) Changes in the system predicted state from the symbolic engine are correlated to de-
tected events from the numeric engine. If the numeric engine generates an event and
it approximately correlates with a predicted state change, then the predicted state is
considered confirmed.

(2) Signals that are implicated as failed by the symbolic engine are correlated to signals
implicated by the numeric engine. When there is agreement, the channel is confirmed as
faulty. When there is a difference between the two, the signal is marked as an unmodeled
event.

The final component in the PC merges results from items (1) and (2) with the list of explicit failures
and events so multiple redundant conclusions of bad signals and unmodeled events are not generated.

H. Causal System Model

The causal system model (CSM) is a connectivity matrix designed to improve source fault isolation
and actor signal identification. In the SDM, the entire domain knowledge is represented as if–then rules

10

only. When the domain is very large and complex, an entirely rule-based representation and associated
inference leads to a large and inefficient knowledge base, causing a very poor focus of attention. To
eliminate such unwieldy knowledge bases in the SDM engine, we provide a causal system model. This
component simplifies the problem by looking for relationships between observations in the data to fill in
blanks or gaps in the information from the SDM.

The CSM accomplishes this by decomposing the problem into smaller modules, called knowledge
sources, and by providing a dynamic and flexible knowledge application strategy. The same concept can
be extended to problems requiring involvement of multiple agents representing different domains. The
CSM reacts as and when conflicts arise during problem solving and uses conflict-resolution knowledge
sources in an opportunistic manner. Essentially, the CSM provides a high-level abstraction of knowledge
and solution and the derived relationships between observation and implication.

The three basic components of the CSM are the knowledge sources, blackboard data structure, and
control. In the CSM, knowledge required to solve the problem is decomposed into smaller independent
knowledge sources. The knowledge sources are represented as SHINE if–then rules. Each rule set or
knowledge source contains knowledge to resolve one task in the diagnostic model. The blackboard holds
the global data and the information on the problem-solving states. Activation of the knowledge sources
modifies the states in the blackboard, leading to an incremental causal relationship for actor signal
identification.

Since the causal relationship is decomposed into a hierarchical organization, the concept of an event
becomes predominant in this blackboard-centered strategy. Any change in the blackboard is considered
an event. Any change in the solution state due either to generation of additional information or to
modification of existing information is immediately recorded. The execution controller notes this change
and takes the necessary actions by invoking an appropriate knowledge source. This process repeats until
the final causal relationship is obtained.

Since the CSM is feed with a real-time stream of events (anomalies, suspected bad signals, events
and unmodeled events), the arrival of a new event can make a previously concluded causal relationship
incorrect. In such cases, corresponding stages have to be undone by backtracking all the previously made
assumptions, leading to non-monotonic reasoning. In other words, we cannot assume additional data will
necessarily refine our conclusions. New detected events may reduce the size of our ambiguity groups, or
they may conflict with our tentative conclusions and cause an entire line of reasoning to be changed. This
requires a dependency network to be incrementally maintained as the causal assumptions are generated
using the knowledge sources.

I. Interpretation Layer

The interpretation layer (IL) collates observations from separate components. It submits a single fault
report in a usable format to recovery and planning components (in the case of a fully autonomous system)
or to system operators. This is a knowledge-based component that is totally dependent upon the domain
and the desired format of the output.

As its inputs it accepts a list of events from the CSM and possible conclusions from the SDM, as
described above. Any supported conclusion that the SDM generates is considered a final output and is
translated into the required output format. The CSM events can be decomposed into rule-based anomalies
and detected events from the numeric engine. The interpretation layer performs a many-to-many mapping
of faults (events) to interpretations. Each interpretation has a context associated with it. Because of
this context, when multiple interpretations are generated within the same context, they can be grouped
together as one interpretation containing several elements. This is typical of events in complex systems
in general.

11

Contexts are assigned by a contextual engine within the interpretation layer. Its purpose is to look for
commonalities among each unique interpretation. In this manner, if there is either a causal or interde-
pendent relationship between interpretations, they are considered as possibly related. For example, if we
have an alarm condition occurring on signals monitoring volts and/or amperes, and the SDM concludes
a fault based upon the number of watts generated, the engine will combine the volts and amperes alarms
with the watts conclusion. This provides for a very concise statement of the fault at hand without the
user being deluged with disjointed information from many different sensors.

The final reduced set of interpretations is processed by a component that reduces interpretations to
conclusions. A rule-based model is used to apply relationship definitions between interpretations, their
causal relationships, and their supported conclusion. For example, if the SDM does not generate a
conclusion for watts being in alarm based upon the signals of volts and amperes being over-ranged, then
such a conclusion can be made here and generated as a final output.

IV. Applications

BEAM has been studied on numerous applications and currently is being formulated for inclusion
into a number of systems, some of which are described in related papers [2,5,7]. In this section, we will
consider the basic classes of application and the value of such a sensing strategy. The shape and scope of
BEAM is highly dependent on the application—not only on the specific system, but on its mission plan
as a whole. As such, it is best described by example, but specifics of this nature go beyond the scope of
this high-level survey article. Please see the related references for more in-depth analysis of particular
cases, which highlight certain qualities of BEAM.

A. Telemetry-Limited Remote Systems

The first and most obvious customers for BEAM are typical systems developed at JPL. The core
mission of JPL is robotic space exploration. Such systems usually are managed by a team of experts who
review the engineering data on a regular basis. These missions are also very expensive and represent a
considerable investment in work hours and time.

Cases like these, where we can count on human experts to oversee the analysis process, are well suited
for BEAM. In these cases, BEAM may serve to enhance operator effectiveness by providing a first look
at the data, effectively compressing it to contain only the relevant, most interesting parts. Benefits as a
result can be expressed in terms of workload, safety, turnaround time, reliability, or cost in work hours.

Complex spacecraft are almost always accompanied by accurate models and simulation left over from
the design process. They undergo a rigorous qualification and are tested through a variety of fault cases.
However, they are impossible to repair or upgrade (except through software); they typically are unique;
and, because of this and the unique environments they encounter, they face a large number of novel
situations.

There are two basic philosophies to BEAM for spacecraft applications: off-board and on-board. Off-
board implementation provides operators with a simple tool to take full advantage of design models and
to study system-wide interactions. It isolates all incidents of “failed” and “interesting” data and, for these
cases, produces a best guess of the source. These results are logged for future comparison and long-term
degradation analysis.

On-board application is more difficult and less flexible, owing to more rigorous software qualification
and more stringent processing requirements. However, there are specific benefits that can be realized only
in an on-board implementation. Most important is the time criticality of detection. Faults can interrupt
critical phases of deep-space missions, such as spacecraft maneuvering or encounter. Because of the large

12

delays in communication, it is highly desirable to provide detection and recovery capabilities to handle a
wide variety of unforeseen occurrences.

In both cases, BEAM functions to reduce operator workload and mission cost while providing quicker
spacecraft understanding and broader safety margins. On-board implementation offers a further increase
in system safety but is much less tolerant of false alarms. When operated strictly off-board, much higher
sensitivity may be requested by the operators to aid in their analysis of special cases.

Experiments using BEAM in both configurations were conducted using the Cassini spacecraft attitude
and articulation control subsystem (AACS) simulation (on-board analysis) and actual flight data (off-
board analysis). The AACS is an extremely complex subsystem, incorporating approximately 1,600 pos-
sible telemetry signals at rates up to 8 Hz. Results of these analyses were presented at the AIAA ’98
conference in Huntsville, Alabama [8]. For the on-board simulation case, BEAM was able to match
the performance of existing fault-protection software—and in some cases to exceed it, particularly with
respect to time of detection—over a portion of the fault-protection test grid. The off-board analysis
experiment was a blind study applied to the first 6 months of flight data, including preflight, launch,
and systems checkout. Despite lacking the commands sent to the spacecraft and knowledge of the sys-
tem design, BEAM was able to automatically detect and isolate all unusual events. This was compared
with the incident/surprise/anomaly (ISA) reports, produced by the operations team, at the end of the
experiment.

B. Reliability-Centered Control

A very different class of problem is faced by many Earth-bound systems that nonetheless can ben-
efit from this approach. There are numerous examples of complex machinery that rely upon internal
sensing and expert operators to provide operating margins for reasons of safety or efficiency. In such an
application, like the spacecraft example above, pure autonomy is not necessary. Instead, it is desirable to
empower the system operators by making system health management an easily accessible and controllable
function.

This problem is typified by the Deep Space Network (DSN), which is managed by JPL. Downlink
is a crucial element in space exploration, as spacecraft observations are useless if their results cannot
be retrieved. The communications antennae are highly subscribed, making reliable operation of great
importance. DSN antennae are complex electromechanical structures, in many ways no different from
spacecraft or aircraft systems. They contain power supplies, hydraulics, signal generators, radiating
elements, and so on. Many of these systems are constructed with health and performance monitors.

BEAM integration with DSN console tools is an ongoing task at JPL. In particular, we seek to allow
control of an entire array of communications antennae, including the ability to “hot swap” other antennae
if constraints or faults affect the system, from a single console. Preliminary results of this effort were
published in [5]. Work is ongoing to mature this system and to provide direct communication with
automated planners and other components [6].

C. Maintenance Cost Reduction

A third class of problem applies to domains such as piloted aircraft. In such an application, the focus is
not on producing new tools for the pilot but instead upon simplifying the job of maintaining the system.

Aircraft maintenance is a costly endeavor, often involving scheduled maintenance and inspections in
addition to replacement of faulty components, which is made more costly by high false-alarm rates and
poor isolation. Additionally, large fleets of aircraft require relatively simple repair procedures, as system
experts are usually unavailable in quantity. This differs greatly from the previous cases. We wish to take
advantage of the large body of work and data existing for such aircraft, and their greater numbers, to
drive a system that makes analysis and repair a routine task. Furthermore, since the fleet of aircraft is

13

expected to age and degrade with time, we require tools to detect and characterize these new phenomena
to allow meaningful prognostics.

A good example of this technology applied to a current aircraft system is given in [2]. This specific
example shows how an aircraft hydraulic system can be treated using this method. The result is a
diagnostic tool that is very quickly trained, enjoys excellent false-alarm rates, and exceeds the performance
of current-day fault-detection techniques.

D. Full Autonomy

The last and most complicated class of application concerns a totally autonomous system. This can
be thought of as an extreme case of any of the previous examples—for instance, a deep-space probe with
its own sequence-generation capability or a pilotless aircraft.

The prospect of an uninhabited aerial vehicle (UAV) carries with it some special concerns. For such an
application, advanced fault detection and isolation are integral to many types of constraint management.
In addition to the ordinary problem of maintenance and safety, system health plays an important role
in determining mission capability, and the complex environmental interaction and vehicle performance
must be watched closely. Above and beyond all of this are the problems of safety certification and
shared airspace. Any self-monitoring technology will be stretched beyond the ordinary task of monitoring
hardware to include observations on the software performance as well.

BEAM is a major component of the Reliable Autonomous Control Technology (REAC) proposal,
referenced in [7]. REAC seeks to provide an integrated suite of autonomy components designed to permit
efficient UAV operation in the face of these concerns. BEAM is particularly effective in this role for
two reasons. First is the ability to detect and characterize novelty, which greatly simplifies corrective
actions and expands safety margins. Second is the sophisticated integration of signal-based and symbolic
analysis. This capability allows BEAM to consider the total state of the aircraft, including performance
data as well as commands, constraints, and sensor data, in a coherent fashion.

V. Conclusion

This article presented the framework for BEAM, a comprehensive self-analysis tool suitable for inclu-
sion for virtually any monitored system. As the aerospace industry faces greater challenges in mission
complexity, advanced design, aggressive cost targets, and true autonomy, so must we evolve the support
structure that goes with them. In most cases, system modeling and available sensors are more than
adequate for the task. Yet it remains to take full advantage of this information. Extracting knowledge
from the data and domain information is an essential step in the process of self-analysis and control.

It is the opinion of the authors that a strategy for autonomous control must include all sources of
information and that this information must be fused methodically and deeply within the process in order
to be of greatest use. The method outlined in this article seeks to engage all such data at the subsystem
level and from them to construct simple but profound conclusions as to the operating health and capability
of the system, as well as projected viability and corrective actions.

No such strategy, no matter how attractive, can ignore the fundamental question of feasibility. For
this reason, our system seeks to mimic the logic of a human operator and draws its training from many
of the same sources. The fault-detection, isolation, and prognostic conclusions are based upon physical
models of arbitrary fidelity, symbolic models, example nominal data, real-time data, and architectural
information such as connectivity and causal diagrams. The algorithms have also been scaled to operate
comfortably on current-generation flight processors.

Such an architecture makes adaptability to numerous systems possible but also increases the usefulness
of the system in concert with more standard methods of control and analysis. Because the data products

14

themselves are accessible at every stage of analysis, BEAM can benefit systems run at any stage of
autonomy—from the extreme of complete self-determination as part of the core flight software to the
opposite of complete human control as a highly advanced analysis tool.

This last point is more valuable than it may appear. A simple reality of advanced systems is that
no testing process can ever be complete and that any new system faces considerable uncertainty in
the field. It is a given that novelty will be encountered and, in order to improve upon the system, its
safeguards must allow it to survive, to characterize the novelty, and to permit improvements to its software
control. This process, in nearly all cases, requires human intervention. BEAM approaches this problem
by incorporating physics models and studying embedded features of the operating physics of the system
in order to isolate a broad class of anomalies, and applies all available rules and limits of allowed system
performance. Following isolation, the results of this analysis are communicated to system experts, who
may then revise the software through modifications to those same models, inclusion of new training data,
or addition of new symbolic rules.

This process, begun at JPL as a method of improving spacecraft safety and operating costs, is presently
under study or being applied to numerous aerospace applications across the entire spectrum of autonomy.
It is hoped that this work will contribute to the greater area of flight software in total and thereby simplify
some of the challenges facing the next steps in vehicle autonomy.

References

[1] M. Zak and H. Park, “Gray Box Approach to Fault Diagnosis of Dynamical
Systems,” The 2001 IEEE Aerospace Conference, Big Sky, Montana, March 2001.

[2] R. Mackey, “Generalized Cross-Signal Anomaly Detection on Aircraft Hydraulic
System,” The 2001 IEEE Aerospace Conference, Big Sky, Montana, March 2001.

[3] M. James and D. Atkinson, “Software for Development of Expert Systems,”
NASA Technology Briefs, vol. 14, no. 6, June 1990.

[4] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis, New
Jersey: Prentice Hall, 1994.

[5] M. James and L. Dubon, “An Autonomous Diagnostic and Prognostic Moni-
toring System for NASA’s Deep Space Network,” The 2001 IEEE Aerospace
Conference, Big Sky, Montana, March 2001.

[6] A. Fukunaga, G. Rabideau, S. Chien, and D. Yan, “Toward an Application
Framework for Automated Planning and Scheduling,” Proceedings of the In-
ternational Symposium on Artificial Intelligence, Robotics, and Automation for
Space, Tokyo, Japan, July 1997.

[7] R. Colgren, S. Gulati, and R. Koneck, “Technologies for Reliable Autonomous
Control (TRAC),” IASTED ’99 Control and Applications Conference, Banff,
Canada, July 1999.

[8] S. Gulati and R. Mackey, “BEAM: Autonomous Diagnostics and Prognostics for
Complex Spaceborne Systems,” poster session, AIAA 1998, Huntsville, Alabama,
November 1998.

15

